Exercice 1

2.a. Comme DCE est équilatéral direct, $E = r_{\frac{\pi}{3}}(C)$

Donc $z_E - z_D = e_{\frac{\pi}{3}}(z_C - z_D)$ et par suite :

$$z_E = i + \frac{1}{2} + i \frac{\sqrt{3}}{2} = \frac{1}{2} + i \left(\frac{\sqrt{3}}{2} + 1 \right)$$

b. Comme BFC est équilatéral direct, $F = r_{\frac{\pi}{3}}(B)$

Donc $z_F - z_C = e_{\frac{\pi}{3}}(z_B - z_C)$ et par suite :

$$z_F = 1 + i - \frac{1}{2} + i \frac{\sqrt{3}}{2} = 1 + \frac{\sqrt{3}}{2} + i$$

3.a. Pour (Σ_1) : $|z - 1 - i| = 1 \iff |z - z_C| = 1 \iff MC = 1$ et donc : (Σ_1) est le cercle de centre C de rayon 1

Pour (Σ_2) : $|z - i| = |z - i| \iff |z - z_B| = |z - z_D| \iff MB = MD$ et donc : (Σ_2) est la médiatrice de $[BD]$

b. $|z_E - 1 - i| = \frac{1}{2} + i \left(\frac{\sqrt{3}}{2} + 1 \right) - 1 - i = - \frac{1}{2} + i \frac{\sqrt{3}}{2} = \sqrt{\left(- \frac{1}{2} \right)^2 + \left(\frac{\sqrt{3}}{2} \right)^2} = \frac{1}{2} + \frac{3}{4} = \frac{4}{4} = 1$ donc $E \in (\Sigma_1)$

$$|z_F - 1 - i| = \sqrt{\left(\frac{\sqrt{3}}{2} - i \frac{1}{2} \right)^2 + \left(\frac{\sqrt{3}}{2} - i \frac{1}{2} \right)^2} = \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1$$ donc $F \in (\Sigma_1)$

c. Soit I le milieu de $[EF]$: $z_I = \frac{z_E + z_F}{2} = \frac{1}{2} + i \left(\frac{\sqrt{3}}{2} + 1 \right) + \frac{1}{2} + i \left(\frac{3 + \sqrt{3}}{4} \right) = \left(\frac{3 + \sqrt{3}}{4} \right) + i \left(\frac{3 + \sqrt{3}}{4} \right)$.

Ensuite : $|z_I - 1| = \sqrt{\left(\frac{3 + \sqrt{3}}{4} \right) + i \left(\frac{3 + \sqrt{3}}{4} \right) - 1} = \sqrt{\left(-1 + \frac{\sqrt{3}}{4} \right) + i \left(\frac{3 + \sqrt{3}}{4} \right)} = \sqrt{\left(-1 + \frac{\sqrt{3}}{4} \right)^2 + \left(\frac{3 + \sqrt{3}}{4} \right)^2}$

$$|z_I - i| = \sqrt{\left(\frac{3 + \sqrt{3}}{4} \right) + i \left(\frac{3 + \sqrt{3}}{4} \right) - i} = \sqrt{\left(\frac{3 + \sqrt{3}}{4} \right) + i \left(-1 + \frac{\sqrt{3}}{4} \right)} = \sqrt{\left(\frac{3 + \sqrt{3}}{4} \right)^2 + \left(-1 + \frac{\sqrt{3}}{4} \right)^2}$$

Donc $|z_I - 1| = |z_I - i| \Rightarrow I \in (\Sigma_2)$
Ensuite \(|z_0 - i| = |0 - i| = 1 \) et \(|z_0 - i| = |0 - i| = 1 \) donc \(|z_0 - i| = |z_0 - i| \Rightarrow \) \(\ O \in (\Sigma_2) \)

Finalement \(|z_c - i| = |1 + i - i| = |1| = 1 \) et \(|z_c - i| = |1 + i - i| = |1| = 1 \) donc \(|z_c - i| = |z_c - i| \Rightarrow \) \(\ C \in (\Sigma_2) \)

4.a. \(\ z_{EF} = z_f - z_{E} = 1 + \frac{\sqrt{3}}{2} + i - \left(\frac{1}{2} + i \left(\frac{\sqrt{3}}{2} + 1 \right) \right) = \frac{1}{2} + \frac{\sqrt{3}}{2} - i \left(\frac{\sqrt{3}}{2} + 1 \right) = \left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right) (1 - i) \)

\(z_{DB} = z_B - z_D = 1 - i \) et donc \(z_{EF} = \left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right) z_{DB} \Rightarrow \)

\(\ EF = \frac{1 + \sqrt{3}}{2} DB \)

Comme \(EF \) et \(DB \) sont colinéaires, les droites \((EF) \) et \((DB) \) sont parallèles

b. \((OC;EF) = \arg \left(\frac{z_f - z_E}{z_c - z_O} \right) = \arg \left(\frac{\left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right) (1 - i)}{1 + i} \right) = \arg \left(\frac{\left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right) (1 - i)}{\left(1 + i\right)(1 - i)} \right) = \arg \left(-i \left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right) \right) \)

Imaginaire pur de partie imaginaire négative

\((OC;EF) = -\frac{\pi}{2} + 2k\pi ; k \in \mathbb{Z} \)

c. D’après 3.a. \((\Sigma_2) \) est la médiatrice de \([BD] \) et notons \(J \) le milieu \([BD] \), on a donc classiquement \(J \in (\Sigma_2) \). Ensuite, on a vu en 3.c. que \(I, O \) et \(C \in (\Sigma_2) \), au final \(I, O, C \) et \(J \) sont alignés (*)

Notons \(K \) le point d’intersection de \((GJ) \) et \((EF) \).

En vertu du parallélisme de \((EF) \) et \((DB) \) démontré en 4.a. on déduit que les triangles \(DJG \) et \(GKF \) ainsi que les triangles \(BJG \) et \(GEK \) sont en situation de Thalès opposées par le sommet \(G \).

On déduit alors : \(\frac{KF}{DJ} = \frac{EK}{JG} \) et \(\frac{EK}{BJ} = \frac{GK}{JG} \) ce qui entraîne :

\(\frac{KF}{DJ} = \frac{EK}{BJ} \Rightarrow KF = EK \) car \(DJ = BJ \).

Donc \(K \) est le milieu de \([EF] \) et par suite \(K = I \).

On en déduit l’alignement de \(G, I \) et \(J \) et de (*) on tire finalement que les points \(O, G \) et \(C \) sont alignés.

Exercice 2

Partie I

Soit \(g_n \) la fonction définie sur \(]0; +\infty[\) par : \(g_n (x) = x - n + \frac{n}{2} \ln(x) \).

1. Sur \(]0; +\infty[\), \(g_n \) est dérivable comme somme de fonctions dérivables et \(g_n' (x) = 1 + \frac{n}{2x \operatorname{Car} x > 0 \text{ et } n \in \mathbb{N}^*} \).

Par suite, \(g_n \) est strictement croissante sur \(]0; +\infty[\)
Ensuite : \[\lim_{x \to -\infty} g_n(x) = \lim_{x \to -\infty} x - n + \frac{n}{2} \ln(x) = -\infty \]

car \[\lim_{x \to -\infty} x - n = -n \text{ (fixé)} \]

\[
\lim_{x \to +\infty} n \ln(x) = +\infty \text{ d'où le résultat par somme.}
\]

De plus : \[\lim_{x \to +\infty} g_n(x) = \lim_{x \to +\infty} x - n + \frac{n}{2} \ln(x) = +\infty \]

car \[\lim_{x \to +\infty} n \ln(x) = +\infty \text{ d'où le résultat par somme.}
\]

On résume ceci par le tableau de variations :

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(-\infty)</td>
</tr>
<tr>
<td>(\alpha_n)</td>
<td>(+\infty)</td>
</tr>
</tbody>
</table>

2. a. Sur \(]0; +\infty[\), \(g_n\) est strictement croissante et continue car dérivable, d’intervalle image \([-\infty; +\infty[\)

auquel 0 appartient, l’équation \(g_n(x) = 0\) admet par conséquent une unique solution \(\alpha_n \in]0; +\infty[\)

par le théorème de la bijection.

On peut en déduire que : \[
g_n(x) > 0 \iff x \in]\alpha_n; +\infty[\quad \text{(*)}
\]

et \(g_n(e^2) = e^2 - n + \frac{n}{2} \ln(e^2) = e^2 > 0\). On déduit alors de (*) que :

\[
\begin{align*}
1 & \in]0; \alpha_n[\\
e^2 & \in]\alpha_n; +\infty[\\
\Rightarrow & 1 \leq \alpha_n < e^2
\end{align*}
\]

b. i. On a \(g_n(\alpha_n) = 0 \iff \alpha_n - n + \frac{n}{2} \ln(\alpha_n) = 0 \iff \ln(\alpha_n) = \frac{n - \alpha_n}{n} = 2 - \frac{\alpha_n}{n}
\]

ii. Ensuite \(g_{n+1}(\alpha_n) = \alpha_n - (n+1) + \frac{n+1}{2} \ln(\alpha_n) = \alpha_n - n + \frac{n+1}{2} \ln(\alpha_n) + \frac{1}{2} \ln(\alpha_n) - 1
\]

Au final : \(g_{n+1}(\alpha_n) = \frac{1}{2} \ln(\alpha_n) - 1\), ensuite on a vu à la question 2.a. que \(1 \leq \alpha_n < e^2\),

d’où par stricte croissance de \(\ln\) :

\[
\ln(\alpha_n) < \ln(e^2) \Rightarrow \frac{1}{2} \ln(\alpha_n) < 1 \Rightarrow \frac{1}{2} \ln(\alpha_n) - 1 < 0 \quad \text{Question b.1.}
\]

iii. Par une étude de signes pour \(g_{n+1}\) analogue à celle effectuée en 2.a. et compte tenu du fait que,

par définition \(g_{n+1}(\alpha_{n+1}) = 0\) et par l’encadré précédent \(g_{n+1}(\alpha_n) < 0\), on déduit que \(\alpha_{n+1} > \alpha_n\)

Bac Blanc n°2 Obligatoire 12 Avril 2012 Lycée Beausser
3. a. D’après le dernier encadré de la question précédente, la suite \((a_n)\) est strictement croissante.
D’après la question 2.a. \((a_n)\) est majorée par \(e^2\).

La suite \((a_n)\) est par conséquent convergente par le théorème de convergence monotone.

b. On pose \(L = \lim_{n \to +\infty} (a_n)\), or d’après 2.b. :

\[
\ln(a_n) = 2 - \frac{2}{n} a_n \Rightarrow \lim_{n \to +\infty} \ln(a_n) = \lim_{n \to +\infty} 2 - \frac{2}{n} a_n = 2 - 0 \times L \Rightarrow \lim \ln(a_n) = 2
\]

Finalement :
\[
\lim (a_n) = \lim e^{\ln(a_n)} = e^2
\]

par composition de limites.

Partie II

1. cf. votre cours de T.S.

2. a. D’après le rappel, si la suite \((u_n)\) converge vers une limite \(l\), alors \(l = l + l^2 \Leftrightarrow l^2 = 0 \Rightarrow l = 0\)

b. \(\forall n \in \mathbb{N}, u_{n+1} - u_n = u_n^2 \geq 0 \Rightarrow (u_n)\) est croissante

C. Si par l’absurde \((u_n)\) était majorée, étant croissante par la question précédente, elle convergerait par le théorème de convergence monotone vers 0 par la question 2.a.

Or \((u_n)\) est croissante et \(u_0 = 2 \Rightarrow \forall n \in \mathbb{N}, 2 \leq u_n \Rightarrow 2 \leq \lim u_n \Rightarrow 2 \leq l\) ce qui contredit \(l = 0\).

On a montré par l’absurde que \((u_n)\) ne pouvait être majorée.

3. D’après 2.b. \((u_n)\) est croissante et d’après 2.c. elle n’est pas majorée.

Donc d’après la R.O.C. \((u_n)\) diverge vers +\(\infty\). On en déduit que \(\lim_{n \to +\infty} \frac{1}{u_n} = 0\)

Exercice 3

1. a. Par approximation affine :
\[
y_{n+1} = f(x_{n+1}) = f(x_n + 0.2) = f(x_n) + 0.2 f'(x_n) = 1.2 f(x_n) - \frac{0.2}{f(x_n)}
\]

Donc \(y_{n+1} = 1.2 y_n - \frac{0.2}{y_n}\)
b. On a donc $f(2) = 4,381$

2. Considérons une fonction constante f solution de (E) : $y' = y - \frac{1}{y}$ et posons $\forall x \in \mathbb{R}, f(x) = k$.

On a alors $\forall x \in \mathbb{R}, f'(x) = f(x) - \frac{1}{f(x)} \iff k = \frac{1}{k} \iff k^2 - 1 = 0 \iff k = \pm 1$.

Les fonctions constantes solutions de (E) sont donc $f = 1$ et $f = -1$.

3. Si une fonction f est solution de (E) alors $f' = f - \frac{1}{f}$ et la présence du terme $\frac{1}{f}$ impose que f ne peut pas s’annuler.

4. Soient deux réels distincts a et b.
 a. Si l’on avait simultanément $f(a) < 0$ et $f(b) > 0$, f étant continue car dérivable, elle s’annulerait en vertu du théorème des valeurs intermédiaires, ce qui est proscrit par la question 3.

Il est donc impossible d’avoir simultanément $f(a) < 0$ et $f(b) > 0$, ce qui entraîne que f est de signe constant sur \mathbb{R}.

b. On a vu à la question précédente que f était de signe constant et on sait de plus que $f(1) = 2$ donc : f est strictement positive sur \mathbb{R}.

5. On pose $g = f^2$.
 a. On a alors $\sqrt{g} = \sqrt{f^2} = |f| \overset{\text{Question précédente}}{=} f$, au final $f = \sqrt{g}$.

b. f est solution de (E) donc $f' = f - \frac{1}{f}$ et d’après la question précédente, on a :

$$\left(\sqrt{g}\right)' = \sqrt{g} - \frac{1}{\sqrt{g}} \iff \frac{g'}{2\sqrt{g}} = \sqrt{g} - \frac{1}{\sqrt{g}} \iff \frac{g'}{2\sqrt{g}} = \frac{2g - 2}{2\sqrt{g}} \iff g' = 2g - 2$$

g est donc bien solution de l’équation différentielle $(F) : y' = 2y - 2$.

c. D’après la question précédente : g est solution de $(F) : y' = 2y - 2$ qui est de la forme $y' = ay + b ; a \neq 0$. Par suite $g : x \rightarrow Ce^{2x} - \frac{2}{2} = Ce^{2x} + 1$. De plus $g(1) = f^2(1) = 2^2 = 4$, d’où :

$$Ce^{2} - \frac{b}{a}$$

Bac Blanc n°2 Obligatoire 12 Avril 2012 Lycée Beaussier
Ce² + 1 = 4 ⇔ C = 3e⁻² et au final, pour tout réel x : \(g(x) = 3e^{-2}e^{2x} + 1 = 3e^{2x-2} + 1 \)

d. D’après ce qui précède : \(\forall x \in \mathbb{R}, f(x) = \sqrt{g(x)} = \sqrt{3e^{2x-2} + 1} \) et donc \(f(2) = \sqrt{3e^{2} + 1} = 4,81 \) ce qui est en cohérence avec le résultat obtenu avec la méthode d’Euler.

Exercice 4

On tire simultanément deux boules. On a alors (On donne les résultats sous forme non simplifiées pour permettre une mise au même dénominateur commun plus facile)

- \(p(\text{"2 noires"}) = \frac{\binom{4}{2} \times \binom{2}{2}}{\binom{6}{2}} = \frac{6}{15} \) et si l’événement « 2 noires » est réalisé, la partie est perdue.

- \(p(\text{"2 blanches"}) = \frac{\binom{2}{2} \times \binom{4}{2}}{\binom{6}{2}} = \frac{1}{15} \) et si l’événement « 2 blanches » est réalisé, la partie est gagnée.

- \(p(\text{"1 blanches et 1 noire"}) = \frac{\binom{2}{1} \times \binom{4}{1}}{\binom{6}{2}} = \frac{8}{15} \). Si l’événement « 1 Blanche et une noire » est réalisé, l’urne est alors dans la configuration suivante : [Diagramme de configuration de l’urne], on tire alors une boule :

la partie est alors gagnée si la boule est noire avec une probabilité de \(\frac{3}{5} \) et perdue sinon.

1. Compte tenu des éléments précédents : On décrit le jeu par l’arbre pondéré :

![Arbre pondéré](image)

Par lecture directe dans l’arbre :

\[p(G) = \frac{8}{15} \times \frac{3}{5} + \frac{1}{15} = \frac{24}{75} + \frac{5}{75} = \frac{29}{75} \]
2. a. \(X(\Omega) = \{-m;10-m\} \), \(p(X=10-m) = p("Partie gagnée") = \frac{29}{75} \)

\(p(X=-m) = p("Partie perdue") = 1 - p("Partie gagnée") = 1 - \frac{29}{75} = \frac{46}{75} \)

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(-m)</th>
<th>(10 - m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_i)</td>
<td>(\frac{46}{75})</td>
<td>(\frac{29}{75})</td>
</tr>
</tbody>
</table>

Loi de \(X \):

\[
E(X) = -m \times \frac{46}{75} + (10-m) \times \frac{29}{75} = \frac{290 - 75m}{75}
\]

b. Le jeu est équitable si et seulement si \(E(X) = 0 \Leftrightarrow 290 - 75m = 0 \Leftrightarrow m = \frac{290}{75} \approx 3.86 \)

Il faut que la mise soit d’environ 3,86 € pour que le jeu soit équitable.

3. On répète 3 fois de manière indépendante une expérience aléatoire à deux issues (gagner ou perdre la partie avec \(p = p("Gagner une partie") = \frac{29}{75} \)) et on considère la variable aléatoire \(Y \) qui décompte le nombre de parties gagnées parmi les 3.

\(Y \) suit la loi binomiale de paramètres \(n = 3 \) et \(p = \frac{29}{75} \), on a alors :

\[
p("Gagner exactement deux partie") = p(X=2) = \binom{3}{2} \left(\frac{29}{75} \right)^2 \left(\frac{46}{75} \right)^1 = 0,275
\]

4. On répète \(n \) fois de manière indépendante une expérience aléatoire à deux issues (gagner ou perdre la partie avec \(p = p("Gagner une partie") = \frac{29}{75} \)) et on considère la variable aléatoire \(Y' \) qui décompte le nombre de parties gagnées parmi les \(n \).

\(Y' \) suit la loi binomiale de paramètres \(n \) et \(p = \frac{29}{75} \), on a alors :

\[
p("Gagner au moins une partie") = 1 - p("Ne gagner aucune partie") = 1 - p(Y' = 0)
\]

\[
= 1 - \left(\frac{29}{75} \right)^n \left(\frac{46}{75} \right)^n = 1 - \left(\frac{46}{75} \right)^n
\]

De plus, on veut : \(1 - \left(\frac{46}{75} \right)^n \geq 0,99 \Leftrightarrow \left(\frac{46}{75} \right)^n \leq 0,01 \)

\[
\Leftrightarrow \ln \left(\frac{46}{75} \right)^n \leq \ln(0,01) \Leftrightarrow n \ln \left(\frac{46}{75} \right) \leq \ln(0,01) \Leftrightarrow n \geq \frac{\ln(0,01)}{\ln \left(\frac{46}{75} \right)} = 9.42 \Rightarrow n \geq 10
\]

Il faut donc jouer au minimum 10 parties pour que la probabilité d’en gagner au moins une soit supérieure à 0,99.